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SUMMARY

This Memorandum describes how Fisher's Linear Discriminant can
be combined with the Fukunaga-Koontz transform to give a useful
technique for reduction of feature space from many to two or three
dimensions. Performance is seen to be superior in general to the
Foley-Sammon extension to Fisher's method. The technique is then
extended to show how a new radius vector (or pair of radius vectors)
can be combined with Fisher's vector to produce a classifier with
even more power of discrimination. Illustrations of the technique
show that good discrimination can be obtained even if there is
considerable overlap of classes in any single projection.
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1 INTRODUCTION

Fisher's linear discriminant function(1 ,2) makes a useful classifier where
" the two classes have features with well separated means compared with their

scatter. The method finds that vector which, when training data is projected 1
on to it, maximises the class separation. It is a many to one linear trans-
formation.

At the other extreme, for the case in which both classes have the same
" mean but different variances Fukanaga and Koontz have described(4 ) a transform

which maximises class discrimination. This method transforms the data so the
joint (sum) covariance matrix for the two classes is the identity matrix and
then selects the elgenvector with the largest difference in eigenvalues for
the two classes. The data is then projected on to this eigenvector to produce
the classifier.
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An advantage of linear projections such as these is that they can give
* the system designer some appreciation of class separation if training data *

is presented as histograms of points projected on to the discriminant vector.
An even better appreciation is gained if training data is presented as a two-
dimensional scatter diagram where the dimensions are chosen to be those which
show the best, in some sense, classification. Such projections on to two
dimensions also allows the operator to select curved or piecewise linear
decision boundaries as a pattern classifier. This interactive approach to
classifier design has been found to yield more productive results than the
use of non-interactive methods such as the quadratic discriminant function
especially where data is non-Gaussian.

The quadratic discriminant method operates thus: first the training data
is used to estimate the class means and covariance matrices. These are then
used to generate multivariate Gaussian probability distribution functions for
the two classes. The decision as to which class a new data point belongs is
taken by evaluating the probability functions at that point and the new point
is assigned to that class with the greatest probability. If the data is truly
Gaussian and if enough training points are available to estimate the means and
covariances accurately this method produces the optimum Baysian classifier.
The decision boundary consists of those points where the pfd's are equal and
this will in general be a multidimensional quadratic surface in feature space.

In practice training data is often non-Gaussian and the interactive
approach using projections of the data is preferred. The problem is that there
is often a huge number of combinations of pairs of features which can be
examined and a methodology is needed which standardises the data and points to
possible two-dimensional projections where discrimination may be high. Ideally
the method should also project the Baysian decision boundary into a unique line
in the two-dimensional subspace. This will then maintain the performance of,- - .

the classifier to the Baysian rate if the data should happen to be Gaussian.

Foley and Sammon(3) have suggested an extension to Fisher's method which
gives a two-dimensional (or more) projection for displaying data. Their method
is based on finding Fisher's vector first; the data is then projected on to the
subspace normal to Fisher's vector and the process of finding Fisher's vector
in that subspace is repeated. The data is then displayed projected on to the
plane subtended by these two vectors and a decision boundary is constructed in
that plane. It is shown later in this Memorandum that this method is of doubt-
ful value for finding the best classification subspace.

The methods proposed in this Memorandum are based on applying a standardi-
sing transform to the training data. This then allows Fisher's method to be
used in conjunction with Fukunaga's method to select the best two-dimensional
linear projection. The method is then extended to show how a nonlinear combin-
ation of features can result in a two or three dimensional scatter diagram with
a performance which is round to be better than the linear method in a number of
cases. The method further allows the Baysian decision surface to be uniquely
represented by a line in the subspace for multivariance Gaussian data with

certain conditions.

2 OBSERVATIONS ON FISHER'S METHOD .

Fisher's method finds the vector F which gives greatest (as defined by a
criterion function) class separation to data points projected on to the vector.
The criterion function is:

2
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vhere m = class mean for class 1, i a, b

W i - covariance matrix for class i.

%. ,.i.

The vector solution to this maximising problem can be shown to be: .16

F - [Wa + Wb]-Ia 1b"

It should be mentioned that maximising this criterion function does not neces- ..-

sarily produce the best projection for classification as shown by Malina( 5 ). .,_
However the differences are usually very small and Fisher's method is used A&
in this Memorandum because it leads to the interesting generalisations and
extensions shown here.

It is clear that a data set can be transformed on to a new set of co-
ordinates without loss or gain of discriminating performance provided the
transform is unique (ie invertible). A decision boundary in one co-ordinate
system maps on to the other with the same number of true of false classifica-
tions on either side. Now the decision threshold on the Fisher axis corres-
ponds to a hyperplane decision surface in feature space, where the hyperplane
is normal to the Fisher axis and intersecting it at the decision threshold.
It is shown in Appendix A that if a linear transformation is applied to the
data the same decision threshold is generated if the Fisher vector is found
either before or after the transformation.

An interesting transform which can be applied to a training data set is
that which causes the joint scatter matrix for the training data to become an
identity matrix. Such a transform can be visualised by first applying a rota-
tion of axes (orthogonal transform) so that the eigenvectors of the scatter
matrix are the orthogonal co-ordinate system (the Karhunen-Loeve transform).
Each co-ordinate can then be scaled so that the variances are unity thus giving
a unity scatter matrix.

In this new co-ordinate system the Fisher axis is

F'1 P- '(a-i

That is, F' is parallel to the axis intercepting the means of the two distribu-
tions, see Figure 1 and 2. This appears to be a useful way of standardising
the use of Fisher's method and there is no loss or gain in performance of the
transformed training data compared with the method applied to the untransformed
data.

It is also evident that if we apply this standardising transform and then
project the data on to the hyperplane normal to the new Fisher vector then the
two distributions obtained will have coincident means (see Figure 3).

3
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3 EXTENSI"'S TO FISHER'S METHOD
06

As mentioned earlier it would be convenient if we could combine Fisher's

vector with some other discriminant function to give a two-dimensional vector
representation - simply because it is easy to plot two-dimensional scatter
diagrams, and also two dimensions should, in general, give better discrimina-
tion than one dimension.

So on what basis do we select another dimension? If the standardising
transform is applied first then, as we have seen, the clusters in the subspace

normal to Fisher's axis will have coincident means. This makes the task of
finding a second Fisher axis impossible. It is this fact that makes this
method rather suspect and it was recognition of this which lead to the identi-
fication of the generalisations described in this Memorandum. It is believed

that these new methods do improve discrimination and indeed illustrative
examples are given to show the improvements which can be obtained when the
methods are used instead of Foley-Sammon.

4 FISHER WITH FUKUNAGA-KOONTZ

In all the methods described from here onwards the first step is to trans-
form the data to give an identity joint covariance matrix (the standardising

transform). The Fisher axis is then the axis through the means. If the data
is projected on to the hyperplane perpendicular to the Fisher axis then the
means will be coincident. To obtain maximum difference between the two classes
we can look for the projection which maximises the differences in variances
(normalised by the sum of the variances). It is then evident from Figure 4

that the bigger the difference the better the classifier.

If the two classes have covariances Wa and Wb. Let T be the standardising
transform such that:

T (Wa + Wb) T- 1

Fukunaga showed that the eigenvectors of

T Wa T -  and T Wb T

are the same and that all eigenvalues are bounded by 0 and 1 and that the sum

of any pair equals 1, ie Aia + ib= 1.

It is clear from this that the axis which gives the biggest difference in
variances for the two classes is the eigenvector with the biggest difference

in eigenvalue for the two classes.

Thus the Fisher projection with the Fukunaga-Kootz (F-K) projection gives
a many-to-one transform with a performance usually better and never worse than
the Fisher with the Foley-Sammon (F-S) projection (for multivariate Gaussian
data). Figures 6 and 7 illustrate an example where the two classes have
different means and where the F-S and F-K vectors are different. Figure 5
shows the parameters used to generate the test data.

Figure 6 shows the scatter diagram for F-S with 100 points for each class
to train and test. Figure 7 shows the same data with Fisher and F-K indicating
a clear improvement.

4
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5 FISHER WITH A RADIUS VECTOR

This use of the F-K transform suggests an even more powerful (nonlinear)
many-to-one transform. Consider a three feature two class problem. After the
standardising transform and projection on to the plane normal to the Fisher
axis we might obtain distributions as shown in Figure 3. If all the eigen-
values for Class A are less than those for Class B then the Baysian decision
surface can be shown to be an ellipse with the eigenvectors as axes (see
Appendix B). %

By rotating the data and rescaling it, it is clear that the Baysian sur-
face can be made into a circle with Class A inside and Class B outside. The
only information needed to test if a new data point lies inside or outside is
to compute its radius from the common mean and test against the radius to the
Baysian threshold. In the more general multidimensional case the Baysian sur-
face can be made into one hypersphere if the eigenvalues of one class are all
less than those of the other: classification in this case involves assigning -

a new point to Class A or B according to whether It lies inside (class with
smaller eigenvalues) or outside the hypersphere (class with larger eigenvalues).

For either of these cases the data set can be mapped from the original
multidimensional feature space down to two where distance along the Fisher
axis is one feature and radius (Euclidean distance) from the Fisher axis (in " -
the transformed space) is the other feature.

This method will be better than the use of Fisher with one F-K axis alone.
In circumstances where the class distribution functions have circular symmetry -,

along the Fisher axis the Baysian surface will also have circular symmetry and
map on to a unique line in the Radius-Fisher plane. Hence in this case perfor-
mance of the F-R space is optimal and equal to performance of a Baysian clas-
sifier in full feature space (for Gaussian data).

To use this method in the more general case where not all eigenvalues of
one class are less than those of the other we divide the training data into
two subsets of reduced dimensionality where the first subspace only contains
features where Aia < Aib and the second only those features where b < Xia-
Any features for which should not be included in the radius calculation.

Figure 11 shows a schematic diagram of the classifier using this method. If
a two-dimensional classifier is required the subset with the best performance
can be selected, otherwise a three-dimensional classifier can be constructed.

Figure 8 shows the scatter in the F-R axis using the same data as used for
the Fisher F-S method (Figure 5). It is seen that the error rate reduces from
6% with F-K to 2% with the radius for this example. The advantage of using the

radius vector can be seen even more clearly when more features are available as
in the ten-dimensional example of Figure 9. Notice that there is no increase
in mean differences in variances. The scatter diagram obtained using the
Fisher-Radius method indicates an average error rate approaching zero. If
the linear methods are applied they would show no improvement over the five-
dimensional case because no use is made of the additional features. All the "
data shown here was generated to give multivariate Gaussian statistics.

The quadratic discriminant function gives optimum performance if data is
multivariate Gaussian but the additional scope given by the procedures described
hence allow a better performance to be obtained if data is highly non-Gaussian.
For instance we found that the data generated with a negative exponential
distribution was better classified using the Fisher radius vector than using
the quadratic discriminant function.

5
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6 CONCLUSIONS

If data is standardised with a linear transform to give a unit joint AW
covariance matrix the Foley-Sammon axis becomes meaningless because the two
classes have coincident means in the hyperplane normal to the Fisher axis.
In this case the Fukunaga-Koontz transform allows the next best feature to
be selected.

Another simple linear transform can give a spherical Baysian decision
surface on features where all eigenvalues are smaller for one of the classes
(see Appendix B). In this case distance along the Fisher axis and radius
from the Fisher axis form a powerful discriminating function. If all eigen-
values are not smaller for one class then the features can be divided into
two groups and two radii calculated with the best or both being used with
Fisher distance to provide the discriminating function. Both linear trans-
forms can be combined into a single operation. Figure 11 shows how simple
the implementation of this classifier would be.

The arguments used in this paper apply to multivariate Gaussian distri-
butions. In practice distributions are not so simple. However we believe
that data can be standardised and inspected using the procedures described
here as a first approach to the classifier design problem. A good classifier
may result, perhaps with some exercising of pathological features or with the
inclusion of special stages to include highly non-Gaussian but well discrimin-
ating features.

The methods described here are for two-class problems only. However they
are particularly suited to the technique of reducing a many-class problem to
that of many two-class problems.

In this form the problem is to identify one species against the world
background of other specir3. This usually results in the world background __""'

class having a larger variance compared with the required species and our
method takes advantage of this characteristic and can give good performance
even when the two class means are similar.
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APPENDIX A INVARIANCE OF FISHER'S METHOD

To show that the decision surface produced by the Fisher linear discriminant
function is invariant under a transform T where y T x is a non-singular linear
transform.

Suppose we have a data set x (where x is an L-dimensional vector). The
mean and covariance of x are then defined as

Ii- E(x)

W = E(x x T )

The Fisher discriminant vector F for the two classes is then found from(1 )

F - (W + Wb) ( - -b) (Al)

Suppose data is now transformed by T such that y - Tx where T is a non-
singular linear transform. Then the covariance matrix of the transformed data
is:

W' - E(TxxT TT) = T W TT ,. ,

Let the vector p be normal to the Fisher vector in the untransformed
space, ie

pTF = 0 (A2)

The Fisher vector F' in the transformed space is obtained from:

= (Wa + WO T(j a

a(TWaTT + TWbTT)-l T( a -Rb)

- (T (Wa + Wb) TT) 1 T( a -

= (TT)-1 (Wa + Wb)-I T-1 T(p a -_b
)

= (TT)-I (Wa + Wb)- (-1a--b (A3)

We can show that any plane normal to the Fisher discriminant vector in
untransformed space will be normal to the new Fisher vector in transformed
space if we can show

pT F1 0 . ']- -

But

F' (T (TT)- (Wa + Wb) - - 2-.b) from (A3)

Z pT TT (TT)-i (Wa + Wb)- (-a -- b)

pT (Wa + Wb) (-a--,

" TF from (Al)

=0 from (A2)
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APPENDIX B HYPERSPHERICAL DECISION BOUNDARIES

This Appendix shows how and when the Baysian decision surface on multi-
variate Gaussian distributions with common means can be transformed to a
hypersphere.

The Fukunaga-Koontz transform shows how two distributions can be trans-
formed to have common eigenvectors. The K-L transform extracted from the
covariance matrix of one class can be used to align the eigenvectors with a
new co-ordinate system. In this system the two data sets are decorrelated
and as they have common means the pdf's can be written as:

Class A

P(a) = Hn ) 1 exp - x 12X (BI) O

iL (7 . 2/2. ia)

Class B ia

1 2
P(b) = f- exp x /2Xib (B2)i=lk (2Tr)L/2 A ib -' ,i-b--

At the Baysian decision boundary the pdf's are equal. Taking logs of

equations (BI) and (B2) and equating gives:

L LL 2+oZ 2  T 2 2 "..'.
x i/2A ia + log 11 X. 2a 

x /2Xib + log n Xib2i== i= a i=1 i=I - -

or

L~ .-.XS2 (1/2X - 1/2 ) log) ] ia (B3)

i a ib ogL Xib(3

If all the coefficients of x have the same sign this is the equation of
a hyperellipse. A simple rescaling transform can be used to reduce this to
a hypersphere with the scaling factor in the ith co-ordinate being given by ".-

k2  
- / L

j ." 1/ X-"

and the actual transform being

kl 0

- -[- k2

0 kL-

If the coefficients of x in equation (3) have different signs some sections
of the surface will be a saddle. To overcome this the data can be transformed
into two subsets of similarly signed coefficients. If the variances of two
features are equal

ka ib

then the ith feature will give no further discrimination and can be disregarded.



Fig 1 Fishers Linear Discriminant Function
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Fig 2 Fishers Linear Discriminant Function
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Fig 3 Projection of Data onto subspace
normal to F
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Fig 7 Scatter in Fisher Fukanaga-Koontz plans !1v
* Total errors -6.5%

Fig 8 Scatter in Fisher Radius plane
Total errors-2%

Fig 9 Scatter in Fisher Radius Plane,

10 dimension data generated with
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